Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.991
Filter
1.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565815

ABSTRACT

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Subject(s)
Antioxidants , Cadmium , Escherichia , Cadmium/toxicity , Hydrogen-Ion Concentration , Environmental Monitoring , Flocculation
2.
Ecotoxicol Environ Saf ; 275: 116228, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38518611

ABSTRACT

Activated carbon air cathode combined with iron anode oxidation-flocculation synergistic Arsenic (As) removal was a new groundwater purification technology with low energy consumption and high efficiency for groundwater with high As concentration. The presence of organic matter such as humic acid (HA) had ambiguous effects on formation of organic colloids in the system. The effects of the particle size distribution characteristics of these colloids on the formation characteristics of flocs and the efficiency of As purification was not clear. In this work, we used five different pore size alumina filter membranes to separate mixed phase solutions and studied the corresponding changes in iron and arsenic concentrations in the presence and absence of humic acid conditions. In the presence of HA, the arsenic concentration of < 0.05 µm particle size components was 1.01, 1.28, 3.07, 7.69, 2.85 and 1.24 times of that in the absence of HA. At the same time, the arsenic content in 0.05-0.1 µm and 0.1-0.45 µm particle size components was also higher than that in the system without HA, which revealed that the presence of HA hindered the flocculation behavior of As distribution to higher particle sizes in the early stage of the reaction. The presence of HA affected the flocculation rate of iron flocs from small to large particle size fractions and it had limited effect on the behavior of large-size flocs in adsorption of As. These results provide a theoretical basis for targeted, rapid, and low consumption synergistic removal of arsenic and organic compounds in high arsenic groundwater.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Arsenic/analysis , Iron , Humic Substances/analysis , Flocculation , Water Pollutants, Chemical/analysis , Electrodes , Colloids , Water Purification/methods
3.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38529898

ABSTRACT

The transcriptome from a Saccharomyces cerevisiae tup1 deletion mutant was one of the first comprehensive yeast transcriptomes published. Subsequent transcriptomes from tup1 and cyc8 mutants firmly established the Tup1-Cyc8 complex as predominantly acting as a repressor of gene transcription. However, transcriptomes from tup1/cyc8 gene deletion or conditional mutants would all have been influenced by the striking flocculation phenotypes that these mutants display. In this study, we have separated the impact of flocculation from the transcriptome in a cyc8 conditional mutant to reveal those genes (i) subject solely to Cyc8p-dependent regulation, (ii) regulated by flocculation only and (iii) regulated by Cyc8p and further influenced by flocculation. We reveal a more accurate list of Cyc8p-regulated genes that includes newly identified Cyc8p-regulated genes that were masked by the flocculation phenotype and excludes genes which were indirectly influenced by flocculation and not regulated by Cyc8p. Furthermore, we show evidence that flocculation exerts a complex and potentially dynamic influence upon global gene transcription. These data should be of interest to future studies into the mechanism of action of the Tup1-Cyc8 complex and to studies involved in understanding the development of flocculation and its impact upon cell function.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Flocculation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription, Genetic
4.
Bioresour Technol ; 397: 130514, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432546

ABSTRACT

Use of Grewia biopolymer as a natural coagulant aid was explored in a dual-coagulant system (conventional coagulant + biopolymer) for wastewater treatment. Such use not only improved turbidity removal efficiency over a wide pH range (5-9) but also helped reducing the concentration demand of inorganic coagulants by 25-50 %. Response surface methodology was employed for investigating the interaction between factors (initial pH, coagulant, and biopolymer concentration) affecting coagulation/flocculation of aqueous laterite suspension, and process optimization for more than 80 % turbidity removal in the desired final pH range (6-7). Mechanisms potentially involved in coagulation/flocculation using biopolymer was elucidated. Techno-economic assessment indicated the feasibility of pilot-scale production of the biopolymer and its use in wastewater treatment. This study demonstrates that Grewia biopolymer has the potential to be used as a coagulant aid and will help researchers select appropriate markets for further cost reduction and successful implementation of biopolymer-based wastewater treatment.


Subject(s)
Grewia , Water Purification , Industrial Waste/analysis , Biopolymers , Flocculation , Water Purification/methods
5.
Sci Total Environ ; 919: 170846, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38342467

ABSTRACT

Microfibers (MFs), the dominant form of microplastics in ecosystems, pose a significant environmental risk due to the inadequacy of existing wastewater treatments to remove them. Recognising the need to develop sustainable solutions to tackle this environmental challenge, this research aimed to find an eco-friendly solution to the pervasive problem of MFs contaminating water bodies. Unused remnants of bacterial cellulose (BC) were ground to form a hydrogel-form of bacterial cellulose (BCH) and used as a potential bioflocculant for polyacrylonitrile MFs. The flocculation efficiency was evaluated across various operational and environmental factors, employing response surface methodology computational modelling to elucidate and model their impact on the process. The results revealed that the BCH:MFs ratio and mixing intensity were key factors in flocculation efficiency, with BCH resilient across a range of environmental conditions, achieving a 93.6 % average removal rate. The BCH's strong retention of MFs released only 8.3 % of the MFs, after a 24-hour wash, and the flocculation tests in contaminated wastewater and chlorinated water yielded 89.3 % and 86.1 % efficiency, respectively. Therefore, BCH presents a viable, sustainable, and effective approach for removing MFs from MFs-contaminated water, exhibiting exceptional flocculation performance and adaptability. This pioneer study using BCH as a bioflocculant for MFs removal sets a new standard in sustainable wastewater treatment, catalysing research on fibrous pollutant mitigation for environmental protection.


Subject(s)
Wastewater , Water Purification , Cellulose , Hydrogels , Ecosystem , Plastics , Bacteria , Flocculation , Water Purification/methods , Water
6.
Water Res ; 254: 121352, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401286

ABSTRACT

Coagulation efficiency is heavily contingent upon a profound comprehension of the underlying mechanisms, facilitated by the evolution of coagulation theory. However, the role of anions, prevalent components in raw and wastewaters, has been relatively overlooked in this context. To address this gap, this study has investigated the impact of three common anions (i.e., chloride, sulfate, and phosphate) on Al-based coagulation. The results have shown that the influence of anions on coagulation depends predominantly on their ability to compete with hydroxyl groups throughout the entire coagulation process, encompassing hydrolysis, aggregation, and the growth of large flocs. Moreover, this competition is subject to the dual influence of both anion concentration and hydroxyl concentration (i.e., pH). The results have revealed the intricate interplay between anions and coagulants, their impact on floc structure, and their importance in optimizing coagulation efficiency and ensuring the production of high-quality water.


Subject(s)
Sulfates , Water Purification , Flocculation , Anions , Wastewater , Cations , Water Purification/methods
7.
Water Res ; 254: 121301, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38417265

ABSTRACT

Fiber-based materials have emerged as a promising option to increase the efficiency of water treatment plants while reducing their environmental impacts, notably by reducing the use of unsustainable chemicals and the size of the settling tank. Cellulose fiber-based super-bridging agents are sustainable, reusable, and versatile materials that considerably improve floc separation in conventional settling tanks or via alternative screening separation methods. In this study, the effectiveness of fiber-based materials for wastewater treatment was evaluated at lab-scale (0.25 L) and at pilot-scale (20 L) for two separation methods, namely settling and screening. For the fiber-based method, the performance of floc separation during settling was slightly affected by an 80x upscaling factor. A small decrease in turbidity removal from 93 and 86 % was observed for the jar and pilot tests, respectively. By contrast, the turbidity removal of the conventional treatment, i.e., no fibers with a settling separation, was largely affected by the upscaling with turbidity removals of 84 and 49 % for jar and pilot tests, respectively. Therefore, results are suggesting that fiber-based super-bridging agents could be implemented in full-scale water treatment plants. Moreover, the tested fibers increase the robustness of treatment by providing better floc removal than conventional treatment under several challenging conditions such as low settling time and screening with coarse screen mesh size. Furthermore, at both lab-scale and pilot-scale, the use of fiber-based materials reduced the demand for coagulant and flocculant, potentially lowering the operational costs of water treatment plants and reducing the accumulation of metal-based coagulants and synthetic polymers in sludge. Acute toxicity tests using the model organism Daphnia magna show that the cellulose fibers introduce insignificant toxicity at the optimized fiber concentration. Although dedicated mechanistic studies are required at various scales to understand in detail the influence of fibers on water treatment (coagulation/flocculation time, floc formation, floc size distribution velocity gradient, etc.), the efficacy and scalability of the fiber-based approach, along with its minimal environmental impact, position it as a viable and sustainable option for existing and future wastewater treatment plants.


Subject(s)
Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Sewage , Polymers/chemistry , Water Purification/methods , Flocculation , Cellulose
8.
Environ Monit Assess ; 196(3): 244, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326512

ABSTRACT

The aim of this research is to study the ability of Cactus leaves to act as a biocoagulants for the removal of lead in water. Different solvents, such as distilled water, NaCl, NaOH, and HCl, were used as chemical activators to extract the active components from the Cactus. The Cactus was utilized as an organic coagulant in five different forms: (i) Cactus juice (CJ); Cactus extract using (ii) distilled water (C-H2O); (iii) NaCl at 0.5 M concentration (C-NaCl); (iv) NaOH at 0.05 M concentration (C-NaOH); and (v) HCl at 0.05 M concentration (C-HCl). In order to establish the optimal conditions for the coagulation, this study employed the jar test as an experimental technique and the Box-Behnken design (BBD) as an experimental approach. According to BBD, there are three factors (k = 3), namely pH, biocoagulant dosage, and settling time. The R2 and R2 adjusted for all coagulants were close to 100%, confirming the validity of all the mathematical models. The results were significant; the highest lead removal efficiencies were 98.11%, 98.34%, 95.65, 96.19%, and 97.49%, utilizing CJ, C-H2O, C-NaCl, C-HCl, and C-NaOH as natural coagulants. The Cactus has been characterized using FTIR, XRD, and SEM to identify the active components that remove lead.


Subject(s)
Cactaceae , Drinking Water , Water Purification , Flocculation , Sodium Chloride , Sodium Hydroxide , Environmental Monitoring , Industrial Waste/analysis , Lead , Water Purification/methods
9.
Environ Sci Pollut Res Int ; 31(10): 15885-15899, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308778

ABSTRACT

Addressing the substantial yearly production of waste dredged slurry with high water content, it is imperative to adopt effective technical treatments for sustainable development. This paper establishes that the curing-flocculation-vacuum filtration (C-F-VF) method efficiently converts high-water content dredged slurry into back-fill soil, achieving rapid dewatering. The study delves into the mechanism facilitating swift dewatering and the heightened mechanical properties of the dewatered soil. The synergy of curing, flocculation, and vacuum filtration expedites the dewatering process. The pre-addition of a curing agent reduces the zeta potential of the slurry, enhancing its efficiency in subsequent flocculation and vacuum filtration. Although the curing agent experiences some loss during vacuum filtration, over 91.22% remains in the dewatered soil, fortifying its strength. Soil strength correlates with the water content post-vacuum filtration and the amount of cement added pre-filtration, with a proposed relevant strength prediction formula.


Subject(s)
Sewage , Water , Flocculation , Vacuum , Soil
10.
Environ Sci Pollut Res Int ; 31(13): 19795-19814, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367113

ABSTRACT

Mill scale (MS) is considered to be a significant metallurgical waste, but there is no economical method yet to utilize its metal content. In this study, which covers various processes in several stages, the solution of iron in MS, which is the Iron and Steel Industry (I&SI) waste, as FeCl3 (MS-FeCl3) in the thermoreactor in the presence of HCl, was investigated. In the next step, the conditions for using this solution as a coagulant in the treatment of I&SI wastewater were investigated using the jar test. The results of the treated water sample were compared by chemical oxygen demand (COD), total suspended solids (TSS), color, and turbidity analyses using commercial aluminum sulfate (Al2(SO4)3) and FeCl3 (C-FeCl3). Additionally, heavy metal analyses were conducted, and the treatment performance of three coagulants was presented. Accordingly, while 2.0 mg/L anionic polyelectrolyte was consumed at a dosage of 4.05 mg/L Al2(SO4)3 at pH 7.0, 0.25 mg/L anionic polyelectrolyte was consumed at a dosage of 1.29 mg/L at pH 5.0 in the C-FeCl3 and MS-FeCl3 studies. Also, Fe, Cr, Mn, Ni, Zn, Cd, Hg, and Pb removal efficiencies were over 93.56% for all three coagulant usage cases. The results showed that the wastewater treatment performance of MS-FeCl3 by the recycling of MS, which is an I&SI waste, was at the same level as C-FeCl3. Thus, thanks to recycling, waste scale can be used as an alternative to commercial products for green production.


Subject(s)
Chlorides , Ferric Compounds , Water Pollutants, Chemical , Water Purification , Waste Disposal, Fluid/methods , Iron/analysis , Industrial Waste/analysis , Polyelectrolytes , Flocculation , Water Pollutants, Chemical/analysis
11.
Water Sci Technol ; 89(4): 1094-1105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38423619

ABSTRACT

In the pursuit of a treatment approach that is both cost-effective and environmental-friendly, the applicability of microscreen (MS) techniques coupled with a primary sedimentation tank (PST) as a physical advanced primary treatment (APT) to enhance the removal of particulate organic carbon (POC) from municipal wastewater was investigated. A pilot unit, including a modified MS, adjustable to different meshes (including 20 and 15 µm) was operated continuously downstream to the PST at the Büsnau wastewater treatment plant in Stuttgart, Germany, and monitored for more than half a year. A strategy involving time-dependent backwashing and recirculation of MS permeate was employed to remove as much POC as possible from primarily treated wastewater, thereby extending the application of the MS. The optimal configuration, PST + 15-µm MS, achieved maximum removal efficiencies of 90% for turbidity, 90% for total suspended solids (TSS), and 80% for total chemical oxygen demand (TCOD). These results are significant, as comparable removal levels for these parameters were conventionally achieved using less eco-friendly methods such as physiochemical APT, including coagulation-flocculation with iron or aluminum salts followed by microscreening or sedimentation. However, this study's findings ascertained that solo physical APT applications could produce equivalent effluent quality with a much smaller footprint while keeping the advanced primary treated wastewater suitable for biological treatment.


Subject(s)
Wastewater , Water Purification , Carbon , Waste Disposal, Fluid/methods , Flocculation , Water Purification/methods
12.
Bioresour Technol ; 397: 130468, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378102

ABSTRACT

Positively charged bubbles efficiently capture and remove negatively charged algal cells without relying on coagulation-flocculation. However, the efficiency is notably influenced by the presence of algal organic matter (AOM). This study investigated the impact of AOM composition on flotation performance by analyzing AOM from various growth phases of Microcystis flos-aquae. The results indicated that low-concentration AOM (<5 mg C L-1), particularly the high molecular weight (>30 kDa) fractions containing high percentages of protein during the exponential growth phase, significantly improved the flotation efficiency by >18%. A high-speed camera system illustrates the pivotal role of low-concentration protein-containing AOM in forming network structures that enhance cell capture. These protein-driven network structures, which enhance the flotation efficiency, provide valuable insights into the development of effective in-situ algal bloom prevention techniques.


Subject(s)
Microcystis , Microcystis/metabolism , Eutrophication , Flocculation
13.
Biomacromolecules ; 25(3): 1629-1636, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38361251

ABSTRACT

There is a high demand for rapid, sensitive, and accurate detection methods for pathogens. This paper demonstrates a method of detecting the presence of amplified DNA from a range of pathogens associated with serious infections including Gram-negative bacteria, Gram-positive bacteria, and viruses. DNA is amplified using a polymerase chain reaction (PCR) and consequently detected using a sterically stabilized, cationic polymer latex. The DNA induces flocculation of this cationic latex, which consequently leads to rapid sedimentation and a visible change from a milky-white dispersion to one with a transparent supernatant, presenting a clear visible change, indicating the presence of amplified DNA. Specifically, a number of different pathogens were amplified using conventional or qPCR, including Staphylococcus aureus, Escherichia coli, and Herpes Simplex Virus (HSV-2). This method was demonstrated to detect the presence of bacteria in suspension concentrations greater than 380 CFU mL-1 and diagnose the presence of specific genomes through primer selection, as exemplified using methicillin resistant and methicillin susceptible Staphylococcus aureus. The versatility of this methodology was further demonstrated by showing that false positive results do not occur when a PCR of fungal DNA from C. albicans is conducted using bacterial universal primers.


Subject(s)
Biosensing Techniques , Latex , Flocculation , DNA/genetics , Staphylococcus aureus/genetics , Polymerase Chain Reaction/methods , DNA, Bacterial/genetics , Sensitivity and Specificity
14.
Extremophiles ; 28(1): 11, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240933

ABSTRACT

The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.


Subject(s)
Halomonadaceae , Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Flocculation , Coal , Phenol/analysis , Phenols , Bioreactors
15.
J Microbiol ; 62(1): 21-31, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38180730

ABSTRACT

It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated to the wild-type strain, it displayed flocculation. Gas2, a 1,3-ß-glucanosyl transferase, was isolated from the EDTA-extracted cell-surface proteins in the Δlkh1 strain. While disruption of the gas2+ gene was not lethal and reduced the flocculation activity of the ∆lkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the flocculation of fission yeast. In addition, we identified the regulation of mbx2+ expression by Lkh1 using RT-qPCR. Taken together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription of gas2+ through Mbx2.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Galactose/metabolism , Galactose/pharmacology , Flocculation , Protein Kinases/genetics
16.
Environ Sci Pollut Res Int ; 31(8): 11801-11814, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225487

ABSTRACT

The present study aims to investigate the efficiency of a combined cheese wastewater treatment approach involving coagulation with ferric chloride coupled with a photo-Fenton-like oxidation process for potential reuse in irrigation. Laboratory-scale tests were conducted, examining the effect of various operational parameters on the treatment process. Specifically, the effects of initial wastewater pH, coagulant dosage, decantation time for the coagulation process, and initial pH, chemical oxygen demand (COD) concentration, and Fe3+ and H2O2 dosages for photo-Fenton-like oxidation were studied. Coagulation was found effective at natural pH of 6 and showed a highest removal efficiency in terms of COD (50.6%), biological oxygen demand BOD5 (42.1%), turbidity (99.3%), and least sludge volume generation (11.8% v/v) for an optimum coagulant dose of 400 mg Fe3+ L-1 and 8 h of decantation time. Thereafter, photo-Fenton-like oxidation (Fe3+/H2O2/UVA-300W) of the pretreated cheese effluent enhanced the removal of COD, BOD5 and TOC to 91.2%, 91.4%, and 97.5%, respectively, using the optimized conditions (pH = 3; [Fe3+] = 5.0 × 10-4 mol L-1; [H2O2] = 0.2 mol L-1 and tirr = 24 h). This study also shows that the proposed combined process allowed a significant phytotoxicity reduction toward lentil seed germination. The obtained outcome was encouraging and supports the possible use of the treated cheese wastewater as an additional water source for agricultural irrigation.


Subject(s)
Cheese , Water Pollutants, Chemical , Water Purification , Wastewater , Waste Disposal, Fluid , Flocculation , Hydrogen Peroxide , Iron , Water Pollutants, Chemical/analysis , Oxidation-Reduction
17.
J Hazard Mater ; 465: 133435, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38224639

ABSTRACT

Nylon-6,6 microplastics (NMPs) in aquatic systems have emerged as potential contaminants to the global environment and have garnered immense consideration over the years. Unfortunately, there is currently no efficient method available to eliminate NMPs from sewage. This study aims to address this issue by isolating Brucella intermedia ZL-06, a bacterium capable of producing a bacterial polysaccharide-based flocculant (PBF). The PBF generated from this bacterium shows promising efficacy in effectively flocculating NMPs. Subsequently, the precipitated flocs (NMPs + PBF) were utilized as sustainable feedstock for synthesizing PBF. The study yielded 6.91 g/L PBF under optimum conditions. Genome sequencing analysis was conducted to study the mechanisms of PBF synthesis and nylon-6,6 degradation. The PBF exhibited impressive flocculating capacity of 90.1 mg/g of PBF when applied to 0.01 mm NMPs, aided by the presence of Ca2+. FTIR and XPS analysis showed the presence of hydroxyl, carboxyl, and amine groups in PBF. The flocculation performance of PBF conformed to Langmuir isotherm and pseudo-first-order adsorption kinetics model. These findings present a promising approach for reducing the production costs of PBF by utilizing NMPs as sustainable nutrient sources.


Subject(s)
Brucella , Caprolactam/analogs & derivatives , Microplastics , Polymers , Plastics , Sewage/microbiology , Flocculation
18.
J Hazard Mater ; 465: 133476, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38232546

ABSTRACT

In this work, novel multifunctional cationic template copolymers with flocculation and sterilization capabilities were synthesized using a low-pressure ultraviolet (LP-UV) template polymerization method for the removal of kaolin and Escherichia coli (E. coli) from water. The influence of template agents on the structural performance of the copolymers was evaluated through characterization, which showed that template copolymer TPADM possesses a higher cationic charge density and a more complex rough surface, contributing to better flocculation performance than that of the non-template copolymer CPADM. Under optimal experimental conditions, TPADM-1 exhibited removal rates of 98.45% for kaolin and 99% for E. coli (OD600 =0.04), marginally outperforming the non-template copolymer. Simultaneously, TPADM-1 produced good adaptability to kaolin and E. coli wastewater in terms of wide pH, speculating that charge neutralization, adsorption bridging, patching, and sweeping simultaneously dominate the flocculation mechanism. Interestingly, SEM and 3D-EEM analysis confirm that the sterilization of E. coli occurs through two distinct functions: initially adsorption followed by subsequent cell membrane rupture and leakage of cellular contents, ultimately leading to cell death. This research further confirms the feasibility of the designed novel multifunctional copolymers for achieving simultaneous disinfection and turbidity removal, demonstrating practical applicability in real water treatment processes.


Subject(s)
Quaternary Ammonium Compounds , Water Purification , Flocculation , Kaolin/chemistry , Escherichia coli , Anti-Bacterial Agents , Polymers/chemistry , Water Purification/methods , Cations , Disinfection
19.
Environ Pollut ; 344: 123429, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38278406

ABSTRACT

Utilizing macroalgal waste biomass for pollution management is a highly efficient method for addressing the environmental difficulties associated with its disposal. To accomplish this, we have attempted to synthesize a graft copolymer by combining ulvan, a sulfated polysaccharide isolated from seaweed, with acrylates. A one-pot synthesis method using UV-initiated graft polymerization with V-50 as the photoinitiator resulted in the production of a distinctive, high-performance, and eco-friendly flocculant, Ulvan-g-Poly (acrylamide-co-acrylic acid) referred as P(U_AAm_AAc). The synthesis was optimized using the CCD-RSM approach, employing molecular weight and inherent viscosity as indicators to optimize the parameters. The structural and physio-chemical properties of the synthesized P(U_AAm_AAc) were characterized utilizing XRD, ATR-FTIR, ζ-potential, and H1 NMR spectroscopy. The flocculation performance of P(U_AAm_AAc) was further examined for the removal of oils from samples with high neem oil in urea solution and low crude oil in seawater. By employing a coagulant-flocculant combination of poly-aluminium chloride (PAC) and P(U_AAm_AAc), it was noted that more than 94% of oil was effectively eliminated in both samples. Optimization of the dosage of P(U_AAm_AAc) resulted in enhanced turbidity reduction and improved dewatering efficiency of the filter cake generated following flocculation. An evaluation of performance was conducted using the commercial flocculant APAM, where synthesized P(U_AAm_AAc) demonstrated similar results. In conclusion, the findings of this research highlight the potential of P(U_AAm_AAc) as a sustainable alternative to commercial flocculants with multifaceted solution to coastal waste management, paving the way for a cleaner and healthier marine ecosystem to mitigate oil emulsion pollution.


Subject(s)
Acrylamides , Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Flocculation , Water , Ecosystem , Polysaccharides , Water Pollution , Oils , Water Purification/methods
20.
BMC Microbiol ; 24(1): 39, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281910

ABSTRACT

BACKGROUND: Water pollution has become a major environmental and health concern due to increasing population and industrialisation. Microbial flocculants are promising agents for treatment of contaminated water owing to their effectiveness, eco-friendliness, and high biosafety levels. In this study, culture conditions of Providencia huaxiensis OR794369.1 were optimised and its bioflocculant was extracted, characterised and used to treat wastewater. RESULTS: The maximum flocculating activity of 92% and yield of 3.5 g/L were obtained when cultivation conditions were: 3% inoculum size, starch, casein, initial pH of 6, cultivation temperature of 30 oC and 72 h of fermentation. The bioflocculant is an amorphous glycoprotein biomolecule with 37.5% carbohydrates, 27.9% protein, and 34.6% uronic acids. It is composed of hydroxyl, amino, alkanes, carboxylic acid and amines groups as its main functional structures. It was found to be safe to use as it demonstrated non-cytotoxic effects on bovine dermis and African green monkey kidney cells, illustrating median inhibitory concentration (IC50) values of 180 and > 500 µg/mL on both cell lines, respectively. It demonstrated the removal efficiencies of 90% on chemical oxygen demand (COD), 97% on biological oxygen demand (BOD) and 72% on Sulphur on coal mine wastewater. It also revealed the reduction efficacies of 98% (COD) and 92% (BOD) and 70% on Sulphur on domestic wastewater. CONCLUSION: The bioflocculant was effective in reducing pollutants and thus, illustrated potential to be used in wastewater treatment process as an alternative.


Subject(s)
Environmental Pollutants , Water Purification , Animals , Cattle , Chlorocebus aethiops , Wastewater , Providencia , Flocculation , Sulfur , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...